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Abstract. The Birkhoff polytope is a long-studied polytope connected to many areas
of mathematics. In this paper, we generalize it by considering convex hulls of subsets
of its vertices. The vertices chosen correspond to avoidance classes of permutations.
We study the structure of two special cases, leading to connections with shellable order
complexes, toric ideals, standard Young tableaux, and (P, ω)-partitions. We also find
that these polytopes have palindromic and unimodal h∗-vectors.
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1 Introduction

Let Sn denote the symmetric group on 1, 2, . . . , n and S = S1 ∪S2 ∪ · · · . Let π ∈ Sk
and σ ∈ Sn. We say that σ contains the pattern π if there is some substring σ′ of σ whose
elements have the same relative order as those in π. If there is no such substring then
we say that σ avoids the pattern π. If Π ⊆ S, then we say σ avoids Π if σ avoids every
element of Π. We denote by

Avn(Π) := {σ ∈ Sn | σ avoids Π}

the avoidance class of Π.
A polytope P ⊆ Rn is the convex hull of finitely many points, written as P =

conv{v1, . . . , vk}. Equivalently, a polytope may be described as a bounded intersection
of finitely many half-spaces. The dimension of P is the dimension of its affine span. An
affine hyperplane l(x) = b is called supporting if l(p) ≥ b for every p ∈ P. If l(x) = b
is a supporting hyperplane, then the set {l(x) = b} ∩ P is called a face of P and is a
subpolytope of P. Faces of dimension 0 are vertices, faces of dimension 1 are called edges,
and faces of dimension dim P − 1 are called facets. Additionally, we say a polytope is
lattice if each vertex is an element of Zn.

Lattice polytopes have long found connections with permutations, in particular via
the Birkhoff polytope: the convex hull of the n× n permutation matrices. In this abstract,
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we generalize this class of polytopes by taking convex hulls of vertices corresponding to
avoidance classes of permutations.

For a lattice polytope P ⊆ Rn, consider the counting function LP(m) := |mP ∩
Zn|, where mP is the m-th dilate of P. This function is a polynomial in m, called the
Ehrhart polynomial of P. In particular, two well-known theorems due to Ehrhart [4] and
Stanley [9] imply that the Ehrhart series of P, EP(t) := 1+ ∑m≥1 LP(m)tm, may be written
in the form

EP(t) =
∑d

j=0 h∗j tj

(1− t)dim P+1 .

for some nonnegative integers h∗0 , . . . , h∗d with h∗0 = 1, h∗d 6= 0, and d ≤ dim P.
We say the polynomial h∗P(t) := ∑d

j=0 h∗j tj is the h∗-polynomial of P and the vector of
coefficients, h∗(P), is the h∗-vector of P. The h∗-vector of a lattice polytope P is a fascinat-
ing invariant, and obtaining a general understanding of h∗-vectors of lattice polytopes
and their geometric/combinatorial implications is currently of great interest.

Beginning in Section 2, we describe a natural blending of pattern avoidance with the
Birkhoff polytope with the goal of determining the behavior of its h∗-vector in some
interesting cases. This is difficult to do directly, and so we take a detour to study certain
helpful triangulations using toric algebra. Finally, in Section 3, we connect these trian-
gulations with a result in the theory of (P, ω)-partitions which allows us to identify the
behavior of the h∗-vector. We have found interesting results for other sets of patterns,
as well as for an analogous generalization of the permutohedron, but space limitations
prevent their discussion in this abstract. For details, see [3].

2 The Birkhoff Polytope

We begin by merging the Birkhoff polytope with avoidance classes of permutations.

Definition 2.1. Let Π be any set of permutations. The Π-avoiding Birkhoff polytope is

Bn(Π) := conv{M ∈ Rn×n | M is the permutation matrix for some σ ∈ Avn(Π)}.

We will be devoting our study to Bn(132, 312) and one other class of polytopes, for
which we will require some more definitions and notation. We say a permutation σ =
a1 · · · an is alternating, or up-down, if a1 < a2 > a3 < · · · . In the interest of compact
notation, we will write Ãvn(Π) for alternating permutations that avoid Π and B̃n(Π) for
the analogous variation of Bn(Π).

This brings us to our second class, B̃n(123). Without much difficulty, one can show
that the projection of B̃n(123) to B̃n−1(123), defined by dropping row n and column
n− 1 of the matrices, preserves the Ehrhart polynomial. So it will suffice to study the
case when n is even.
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2.1 Sublattices of the Weak Order

Recall that the right (respectively, left) weak (Bruhat) order on Sn is defined by the cover
relations σ1 l σ2 if there is a simple transposition si such that σ1si = σ2 (respectively,
siσ1 = σ2) and inv(σ2) = inv(σ1) + 1. Here, inv σ is the number of inversions of σ.

Let Qn(Π) denote the poset obtained by restricting the right weak order to Avn(Π).
Similarly define Q̃n(Π) for the left weak order on Ãvn(Π). Inequalities involving per-
mutation matrices are meant to refer to these two partial orders on the corresponding
permutations.

We will find two classes of previously-studied posets useful, so we define them now.
Let M(n) denote the poset of shifted Young diagrams with largest part at most n, ordered
by inclusion. These are the posets described in Exercise 3.187(a) in [10] and studied using
linear algebra in [6]. In particular, M(n) is a distributive lattice since it is a principle
lower order ideal in the shifted version of Young’s lattice.

For the other class of useful posets, let D(k) denote the poset of (left-justified) Young
diagrams fitting inside the shape (k− 1, k− 2, . . . , 1), ordering by inclusion. Again, one
sees easily that these are distributive lattices.

Proposition 2.2. For all n, Qn(132, 312) ∼= M(n − 1) and Q̃n(123) ∼= D(dn/2e). Thus,
Qn(132, 312) and Q̃n(123) are distributive lattices.

For a general finite distributive lattice L of rank n, it is well-known that there exists an
n-element poset P for which L ∼= J(P), where J(P) is the lattice of order ideals of P. The
poset P can be taken to be the join-irreducible elements of L and using the order relation
from L restricted to these elements. Denote the poset of join-irreducibles of L by Irr(L).
For simplicity, we identify the join-irreducibles of Qn(132, 312) with the join-irreducibles
of M(n− 1), and likewise identify the join-irreducibles of Q̃n(123) and D(dn/2e).

Let us now determine the join irreducibles of our two lattices. Using the Young
diagram interpretation of both, an element is join irreducible precisely when the shape
has exactly one inner corner, that is, a box in row b and column c, which we will refer
to as (b, c), such that neither (b + 1, c) nor (b, c + 1) is in the shape. Identifying these
diagrams with the coordinates of their unique inner corners, the induced partial order
on both posets of join irreducibles is component-wise. For the remainder of this paper,
the join irreducibles of Qn(132, 312) and Q̃n(123) will be identified with the elements of
these posets.

2.2 Triangulations, Shellabililty, and EL-labelings

In this section we will use the posets Qn(132, 312) and Q̃n(123) to carefully decompose
Bn(132, 312) and B̃n(123). First, we recall some definitions and concepts in geometry
and poset topology.

A polytopal complex F is a finite nonempty collection of polytopes such that
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1. if P ∈ F , then every face of P is in F , and

2. if P, Q ∈ F , then P ∩Q is a face of both P and Q.

A commonly-considered polytopal complex is the face complex F (P) of a polytope P,
whose elements are all faces of P.

A triangulation of a polytopal complex F is a geometric simplicial complex ∆ with
vertices those of F and underlying space equal to the union of the faces of F , such that
every face of ∆ is contained in a face of F . A triangulation of the face complex F (P) of
a polytope P is simply called a triangulation of P. A lattice simplex is called unimodular
if its volume is 1 when normalized for the lattice it spans, and a triangulation is called
unimodular if each simplex it contains is unimodular. Therefore, if P has a unimodular
triangulation T , then its normalized volume is equal to the number of maximal simplices
in T .

Now, the order complex ∆(Q) of a poset Q is the simplicial complex of chains in Q.
A simplicial complex is shellable if its maximal faces are of the same dimension and can
be ordered as F1, . . . , Fk such that for each i = 1, . . . , k− 1, Fi+1 ∩ (∪i

j=1Fj) is a nonempty
union of facets of Fi+1. A poset is called shellable if its order complex is shellable.

To show that Qn(132, 312) and Q̃n(123) are shellable we will make use of the existence
of a particular labeling of the edges in their Hasse diagrams. If Q is a poset, set

E(Q) := {(q1, q2) ∈ Q×Q | q1 l q2},

thought of as the edges of the Hasse diagram of Q. An edge labeling of Q by Z is a
function λ : E(Q) → Z. A saturated chain q0 l q1 l · · ·l qk in Q is called increasing
if λ(q0, q1) < λ(q1, q2) < · · · < λ(qk−1, qk). An EL-labeling of a poset Q is an edge
labeling such that every interval [x, y] in Q has a unique increasing maximal chain which
lexicographically precedes all other maximal chains of [x, y]. Posets admitting an EL-
labeling are shellable and are usually referred to as EL-shellable.

We will use EL-shellable posets to decompose Bn(132, 312) and B̃n(123) in specific
ways in Section 3. Fortunately, specific EL-shellings of Qn(132, 312) and Q̃n(123) are
available using a technique from [7]. A natural labeling of a poset P with |P| = n is
an order-preserving bijection ω : P → [n]. Let L be a finite distributive lattice so that
L ∼= J(P) where P is the poset of join irreducibles, and let ω be a natural labeling of P.
Then we have a cover of order ideals I l J in L if and only if J− I = {x} for some x ∈ P.
Give the cover the label λ(I, J) = ω(x). This edge labeling is an EL-labeling for L.

To apply this process we will use the natural labeling of the join-irreducibles in
Irr(Qn(132, 321)) given by

ω(b, c) = (b− 1)n + c + 1−
(

b + 1
2

)
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and in Irr(Q̃n(123)) for n even by

ω(b, c) =
(b− 1)(n− b)

2
+ c.

To simplify notation, we will often identify maximal chains c : q0 l q1 l · · · l qk in
Qn(132, 312) and Q̃n(123) with their sequences of edge labels

λ(c) = (λ(q0, q1), λ(q1, q2), . . . , λ(qk−1, qk)).

We now take a first step in constructing a bridge from purely combinatorial infor-
mation of these simplicial complexes to geometric information about Bn(132, 312) and
B̃n(123). The next result is proved by an inductive argument based on the lexicographic
order of the maximal simplices in the corresponding order complexes.

Proposition 2.3. Let f : ∆(Qn(132, 312))→ Rn×n be the function

f ({σ1, . . . , σu}) = conv{Mσ1 , . . . , Mσu},

where Mσi is the matrix for σi. The collection

Tn(132, 312) := { f (Γ) | Γ ∈ ∆(Qn(132, 312))}

is a set of simplices contained in Bn(132, 312), where each f (Γ) is unimodular with
respect to the affine lattice aff( f (Γ)) ∩Zn×n. The collection T̃n(123), defined similarly, is
a collection of unimodular simplices in B̃n(123).

We would like to show that Tn(132, 312) and T̃n(123) are actually unimodular tri-
angulations of their respective polytopes. To do so, we will use techniques from toric
algebra, but first make the following note: if a lattice polytope P does have unimodular
triangulation, then it follows quickly that it has the integer decomposition property (or is
IDP), that is, for all positive integers m and any x ∈ mP ∩Zn, there exist m points in
P ∩Zn whose sum is x.

2.3 Toric Algebra

The methods we will use to show Tn(132, 312) and T̃n(123) are unimodular triangula-
tions of their respective polytopes require a bit of algebra background. First, let A =
{l1, . . . , ls} ⊆ Zn. We may define k[A] := k[xl1 , . . . , xls ], to be considered as contained in
the ring of Laurent polynomials k[x±1 , . . . , x±n ], where k is a field and x(v1,...,vn) = ∏ xvi

i .
It turns out that it is helpful to study A by first defining TA = k[t1, . . . , ts] and the map
φ : TA → k[A] by φ(ti) = xli , since then we have

TA/ ker φ ∼= k[A].
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The ideal IA := ker φ is the toric ideal of A, and has been studied extensively in part due
to its uses in algebraic statistics, algebraic geometry, and convex polytopes.

If P is a lattice polytope then we set AP = (P, 1) ∩Zn+1, and

k[cone(P)] := k[xazm | a ∈ mP ∩Zn] ⊆ k[x±1 , . . . , x±n , z],

an algebra graded by the exponent of the new variable z. So when P is IDP we have
k[cone(P)] = k[AP]. However, this equality does not hold if P is not IDP, since then the
monoid generated by AP does not generate all elements of cone(P) ∩Zn+1. To remedy
this we have to introduce the Hilbert basis of cone(P), which is the unique minimal-
cardinality set H ⊆ cone(P) ∩Zn+1 such that every lattice point of cone(P) is a Z≥0-
linear combination of elements of H. The existence and uniqueness of the Hilbert basis
can be proved using the Hilbert Basis Theorem.

This allows us to define the toric ideal of a polytope P: Suppose the Hilbert basis of
cone(P) is H = {(v1, w1), . . . , (vr, wr)} ⊆ Zn ×Z. We have TH/IP

∼= k[cone(P)], where
IP = ker φ is the toric ideal of P. If P is IDP, then IP = IAP , but in general only IP ⊇ IAP .

One significant advantage of studying the toric ideal of more general sets A is due
to its ability to create triangulations of convA, using only the points from A, under
sufficient conditions. Specifically, if there is some ν = (ν1, . . . , νn) ∈ Rn such that νTli = 1
for each li ∈ A, we call A a point configuration, or simply a configuration if there is no risk
of confusion. When A is a configuration, then the positive span

pos(A) :=

{
s

∑
i=1

λili | λi ≥ 0 for all i

}
⊆ Rn

is a polyhedral cone (differing from cone(A) ⊆ Rn+1) containing no positive-dimensional
subspace, so a Hilbert basis exists. If A is not a configuration, then pos(A) is still a cone
but now contains a nontrivial subspace, so a Hilbert basis does not exist since a minimal
generating set of pos(A) ∩Zn is no longer unique. Note that for any polytope P in Rn,
the set AP is a configuration since it satisfies eT

n+1v = 1 for each v ∈ AP.
Techniques from toric algebra will provide the tools for a critical step in proving that

the collections of simplices introduced in the previous section actually form unimodular
triangulations of their respective polytopes. In particular, when P is one of these poly-
topes, we will use IAP to identify a triangulation of convAP, using only the elements of
AP. In this case, since P is a subpolytope of [0, 1]n×n, it contains no lattice points other
than its vertices. So, AP consists exactly of the vertices of (P, 1), and a triangulation of
convAP is automatically a triangulation of (P, 1), which in turn induces a triangulation
of P by projecting each simplex back into Rn×n. The triangulation of P will be uni-
modular with respect to the lattice generated by Z-linear combinations of the elements
of P. Observing that this triangulation consists exactly of the simplices in Tn(132, 312)
(respectively, T̃n(123)), we will have shown that the triangulations are unimodular with
respect to the affine lattice Bn(132, 312) ∩Zn×n (respectively, B̃n(123) ∩Zn×n).
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Returning to the general development, when S ⊆ Rn is a unimodular simplex, it
is not difficult to show that AS is the Hilbert basis of cone(S). When P is a general
lattice polytope, we only know a priori that AP must be contained in the Hilbert basis
of cone(P). When a triangulation T of P is known, each lattice point x ∈ cone(P) lies
in cone(S) for some S ∈ T . If S is unimodular, then x may be written as a sum of just
the elements in (S, 1) ∩Zn+1 ⊆ AP. Thus, if T is a unimodular triangulation, x can
always be expressed as a sum of elements in AP, so AP is exactly the Hilbert basis of
cone(P). Therefore, in this case, any properties of (T , 1) as a unimodular triangulation
with respect to affAP ∩Zn+1 carry over to T as a unimodular triangulation of P.

Before continuing with toric ideals, let us first recall some additional definitions. Let
∆ be an abstract simplicial complex on vertex set {v1, . . . , vs} and let T = k[t1, . . . , ts].
The Stanley-Reisner ideal of ∆ is

I∆ := (ti1 · · · tij | {i1, . . . , ij} /∈ ∆),

where the parentheses represent the ideal of T generated by these monomials. This
definition leads us to the Stanley-Reisner ring, T/I∆, whose monomials are those with
support corresponding to faces of ∆. The numerator of its Hilbert series is called the
h-polynomial of ∆. If P is a polytope and ∆ is a unimodular triangulation of P, then the
h-polynomial of ∆ and the h∗-polynomial of P coincide.

Note that the Stanley-Reisner ideal of a simplicial complex accounts for the combina-
torial structure of the complex and does not inherently reflect any geometric properties.
To overcome this limitation, we will express the Stanley-Reisner ideal as the result of
operations on a different ideal, designed with geometric properties in mind.

Now, suppose ≺ is a monomial order on T, that is, a total well-ordering of the mono-
mials of T which respects multiplication. Consider any ideal I of T. Each f ∈ I then has
an initial or leading term with respect to ≺, denoted in≺( f ), which is the term of f that is
greatest with respect to ≺. The initial ideal of I with respect to ≺ is the ideal generated
by the initial terms of polynomials in I, that is,

in≺(I) := (in≺( f ) | f ∈ I).

A Gröbner basis of I is a finite generating set G for I such that in≺(I) = (in≺(g) | g ∈ G).
Since I is assumed to be an ideal of a Noetherian ring, a Gröbner basis always exists
and may be computed from a given finite set of generators for I using the well-known
Buchberger algorithm. Say G is reduced if each element has a leading coefficient of 1 and
for any g1, g2 ∈ G, in≺(g1) does not divide any term of g2. Given an ideal I ⊆ T and
a fixed monomial ordering on T, there are many Gröbner bases of I but there is exactly
one reduced Gröbner basis of I.

There are many nice results connecting Gröbner bases with combinatorics, one of
which involves types of triangulations that we define now. Suppose P ⊆ Rn is an
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n-dimensional lattice polytope and P ∩ Zn = {l1, . . . , ls}. Choose some vector w =
(w1, . . . , ws) ∈ Rs such that the polytope

Pw := conv{(l1, w1), . . . , (ls, ws)} ⊆ Rn+1

is (n+ 1)-dimensional, i.e., Pw does not lie in an affine hyperplane of Rn+1. Certain facets
of Pw have outward-pointing normal vectors with a negative last coordinate; projecting
these facets back to Rn provides the facets of a polytopal decomposition of P. If the
facets are themselves simplices, then the decomposition is a triangulation. Triangulations
obtainable in this way for some w are called regular, and will be denoted Υw(P).

There is a close connection between regular triangulations of conv(A), whereA ⊆ Zn

is a configuration of size s, and initial ideals of IA. First, we note that each monomial
ordering ≺ on TA = k[t1, . . . , ts] can be represented by a sufficiently generic weight vector
w ∈ Rs such that, for all u, v ∈ Zs

≥0, tu ≺ tv if and only if wTu < wTv. Next, we define
the initial complex ∆≺(I) of an ideal I ⊆ TA with respect to ≺ to be the simplicial complex
on [s] such that F is a face of ∆≺(I) if and only if there is no monomial in in≺(I) whose
support is F. Using linear programming, one may show the following.

Theorem 2.4 (Theorem 8.3,[11]). Let A ⊆ Zn be a configuration. If w is the weight
vector for a monomial order ≺ on TA, then ∆≺(IA), an abstract simplicial complex, is
geometrically the regular triangulation Υw(conv(A)).

Two other important connections given in [11] are summarized below.

Theorem 2.5 (Corollary 8.4 and Corollary 8.9, [11]). For any monomial order ≺ and
corresponding weight vector w, the radical rad(in≺(IA)) is the Stanley-Reisner ideal of
Υw(conv(A)). Moreover, in≺(IA) is squarefree if and only if Υw(conv(A)) is unimodular
with respect to the affine lattice generated by Z-linear combinations of points in A.

The triangulations Tn(132, 312) and T̃n(123) will turn out to have another property
as well. We demonstrate these by taking the vertices of P = Bn(132, 312) (respectively,
P = B̃n(123)) and imposing a certain graded reverse lexicographic (grevlex) monomial
ordering on TAP /IAP induced from Qn(132, 312) (respectively, Q = Q̃n(123)). This al-
lows us to define a reverse lexicographic, or pulling, triangulation of a lattice polytope
P, which is any triangulation whose Stanley-Reisner ideal is rad

(
in≺grevlex(IP)

)
. Thus,

a reverse lexicographic triangulation of P may be described as the triangulation whose
maximal simplices are the projections of the appropriate facets of Pw where w is a weight
vector for ≺grevlex.

We now have all the definitions in place to state our main result of this section. It is
proved by constructing, in each of the two cases, a reduced Gröbner basis for IAP with
respect to grevlex order and then appealing to the two previous results and Proposi-
tion 2.3.
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Theorem 2.6. The sets Tn(132, 312) and T̃n(123) are shellable, regular, unimodular re-
verse lexicographic triangulations of Bn(132, 312) and B̃n(123), respectively.

Because the above triangulations are grevlex triangulations, Corollary 2.5 of [9] gives

h∗(Bn(132, 312)) = h(Tn(132, 312)) = h(∆(Qn(132, 312))), (2.1)

and likewise for B̃n(123). This fact comes into play in the next section when making
statements about the components of h∗-vectors for our polytopes.

3 The Ehrhart Theory of Bn(132, 312) and B̃n(123)

The previous section identified shellable, regular, and unimodular triangulations of
Bn(132, 312) and B̃n(123) which arose from order complexes of certain distributive lat-
tices; in this section, we use the EL-labelings of the lattices to study the h∗-vectors of the
polytopes. To do so, we require some more definitions and background.

Suppose P ⊆ Rn is a lattice polytope containing the origin in its interior. We say that
P is reflexive if its polar dual

P∨ := {x ∈ Rn | xTy ≤ 1 for all y ∈ P}

is also a lattice polytope. Any lattice translate of a reflexive polytope is also called
reflexive. A lattice polytope P is said to be Gorenstein if kP is reflexive for some k, called
the index. Stanley [8, Theorem 4.4] proved that a lattice polytope is Gorenstein if and
only if its h∗-vector is palindromic.

The main goal of this section will be to sketch a proof of the following theorem.

Theorem 3.1. For all n, the h∗-vectors of Bn(132, 312) and B̃n(123) are palindromic and
unimodal.

If the hyperplane description of a lattice polytope is known, then deciding whether its
h∗-vector is palindromic is often a straightforward task. Such a description of Bn(132, 312)
and B̃n(123) has been elusive, though, so we must approach the proof of Theorem 3.1 by
showing the palindromic condition directly.

One benefit of going through the work of the previous section is that once a Goren-
stein polytope is known to have a regular, unimodular triangulation, it follows that the
h∗-vector of the polytope is unimodal in addition to being palindromic [2]. Thus, be-
cause of Theorem 2.6, to demonstrate Theorem 3.1 it suffices to prove the palindromic
condition.

We first need to recall some results about shellable triangulations. In such a triangu-
lation with shelling order F1, . . . , Fs, the restriction of face Fj is the set R(Fj) of vertices
v ∈ Fj such that the facet Fj − v is contained in F1 ∪ · · · ∪ Fj−1. The shelling number of Fj
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is r(Fj) = |R(Fj)|. The following result of Stanley shows that the entries of the h∗-vector
of the polytope being shelled can be computed using shelling numbers.

Proposition 3.2 (Corollary 2.6, [9]). Suppose that T1, . . . , Tk is a shelling order of a uni-
modular triangulation of a lattice polytope P. Then the component h∗i of h∗(P) is equal
to the number of simplices Tj such that r(Tj) = i.

When using EL-shellings, there is an easy way to determine the shelling number of a
facet, that is, of a maximal chain c, from its labeling. In particular, if

λ(c) = (λ(q0, q1), λ(q1, q2), . . . , λ(qk−1, qk))

then qm ∈ R(c) if and only if we have a descent λ(qm−1, qm) > λ(qm, qm+1) in λ(c). This
is the content of the following lemma of Björner.

Lemma 3.3 (Lemma 2.6, [1]). Let c be a maximal chain of the poset P admitting an
EL-labeling λ, and let des σ note the number of descents in σ ∈ Sn. Then

r(c) = des λ(c).

The last link in our chain will come from a result in the theory of (Q, ω)-partitions
as developed by Stanley. A fuller exposition can be found in Chapter 3 of his book [10].
Let Q be a poset with |Q| = n, and let ω : Q → [n] be a bijection, called a labeling of Q.
We say f : Q → Z≥1 is a (dual) (Q, ω)-partition if f is order preserving, and, whenever
s < t and ω(s) > ω(t), then f (s) < f (t).

In a sense one may think of ω as indicating where strict inequalities of f occur, rather
than weak inequalities. If ω itself is order-preserving then, as we have already seen, it
is called a natural labeling of Q. We call ω dual natural if its dual labeling ω : Q → [n],
defined by the complementation ω(q) = n + 1− q, is natural.

We will be concerned with the order polynomial of (Q, ω), denoted ΩQ,ω(m), which is
the number of maps f : Q → [m] such that f is order-preserving and, whenever s < t
and ω(s) > ω(t), then f (s) < f (t). It can be shown that ΩQ,ω(m) is a polynomial in m
of degree n = |Q|. Equivalently, the generating function for the order polynomial must
be in the form

∑
m≥0

ΩQ,ω(m)tm =
AQ,ω(t)

(1− t)n+1

where AQ,ω(t) is a polynomial of degree at most n called the Eulerian polynomial of
(Q, ω). In fact, one can give an explicit description of AQ,ω(t) as follows. Define the
Jordan-Hölder set of (Q, ω), denoted L(Q, ω), to be the set of all permutations of the form
w = ω(q1)ω(q2) . . . ω(qn) as q1, q2, . . . , qn runs over all linear extensions of Q, that is,
total orders on Q such that if qi < qj in Q then i < j.

We thank Richard Stanley for pointing out that (P, ω)-partitions could be used to
prove the following result. In particular, it is a consequence of Theorem 3.15.8, Corollary
3.15.12, and Corollary 3.15.18 of [10].
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Theorem 3.4. Let Q be a poset and let ω be a natural labeling of Q. Then the Eulerian
polynomial AQ,ω(t) is palindromic if and only if Q is graded.

The previous three results combined with Theorem 2.6 and equation (2.1) prove the
the following result.

Theorem 3.5. For all n, the h∗-vectors of Bn(132, 312) and B̃n(123) are palindromic.

Now that we know the h∗-vectors sort the simplices of Tn(132, 312) and T̃n(123) by
their shelling number, and these triangulations are unimodular, then we can easily iden-
tify the normalized volume. We simply need to count the number maximal chains in the
corresponding distributive lattices. But by Proposition 2.2, this amounts to counting the
number of standard Young diagrams of appropriate shape. Using the well-known hook
formulas, established in [12] and [5], provides us the the normalized volumes.

Corollary 3.6. The normalized volume of Bn(132, 312) is

Vol Bn(132, 312) =
(

n
2

)
!

∏n−1
i=1 (i− 1)!

∏n−1
i=1 (2i− 1)!

Setting k = dn/2e, the normalized volume of B̃n(123) is

Vol B̃n(123) =
(

k
2

)
!

1

∏k−1
i=1 (2i− 1)k−i

.
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